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This community has already identified many of the applications of ML/AI for IFE 
research

Scott, G.G. Lawrence Livermore National 
Laboratory

High repetition rate diagnostics with 
integrated machine learning analysis 
for a new paradigm of actively 
controlled Inertial Fusion Energy 
experiments

Heuer, Peter Laboratory for Laser Energetics, 
University of Rochester

Accelerating the science, technology, 
and workforce base for inertial fusion 
energy with a proposed high 
repetition rate facility

Gopalaswamy, V. Lawrence Livermore National 
Laboratory

Validating IFE Concepts with Machine 
Learning Driven Design Optimization

https://lasers.llnl.gov/content/assets/docs/nif-workshops/ife-workshop-2021/white-papers/scott-LLNL-IFE-workshop-2022.pdf
https://lasers.llnl.gov/content/assets/docs/nif-workshops/ife-workshop-2021/white-papers/heuer-LLE-IFE-workshop-2022.pdf
https://lasers.llnl.gov/content/assets/docs/nif-workshops/ife-workshop-2021/white-papers/gopalaswamy-LLE-IFE-workshop-2022.pdf
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Key Metrics
• Laser technology has enabled high-energy (10’s J-kJ) multi-Hz operationà data throughput by ~36,000X.

• Control systems still require “hands on” operation. Need ML for fine control/stability for IFE power plant.

• “Big Data” (TB/s?) handling through AI will be necessary to filter, analyze, and retain important data.

• ML analyzed diagnostic dataà µs-ms timescales (>1,000X speed)

• Surrogate models from ensemble simulations to scan multi-dimensional parameter space. >1,000X faster

• Comparison/retraining during HRR experimental operationsà optimization and exploration

Integrating Machine Learning and Artificial Intelligence will be key to full 
utilization of HRR for accelerated scientific discovery

The revolution in computational power and machine learning techniques paves the way for new 
approaches in data analysis, prediction, and comparing simulation and experiment 

Summary
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TUNL

Currently we make use of a number of premier facilities around the US & the 
world to conduct forefront HED science

HED science has focused on large, energetic drivers that are mostly single-
shot (>shot/30 min)

MEC SLAC

Z Machine

DCS

OMEGA-60

NIF

Jupiter Laser Facility

OMEGA EP

NIF-ARC

Texas PW

Motivation
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In the near-term, laser drivers are moving toward higher repetition rates

P. Hatfield, et al., “The data-driven future of high-energy-density physics”, Nat. Persp. (2021)

Current/Future Lasers
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P. Hatfield, et al., “The data-driven future of high-energy-density physics”, Nat. Persp. (2021)

In the near-term, laser drivers are moving toward higher repetition rates
Current/Future Lasers
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Gaps in rep-rate and energy (scale) will need to be bridged for IFE, but there are 
still many challenges to enabling true HRR experiments

P. Hatfield, et al., “The data-driven future of high-energy-density physics”, Nat. Persp. (2021)

Current/Future Lasers
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HRR will provide the 10,000’s of shots to adequately provide opacity and radiative 
properties benchmark data

Astro, ICF & HED at T>200 eV, r>0.1 g/cc are limited by under-validated radiative 
properties models that require rigorous validation

Hoarty, JPCS, 2010

Short pulse 
heater beam 

(>1020 W/cm2)

Buried <0.1 µm thin 
micro-dot sample

x-ray emission

Long pulse 
drive beam 
(compression)

Typical Experiments

Heeter, LLNL

Solar Model Zones

Boundary

Image / NASA/CXC/M.Weiss O
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HRR will generate consistent and reproducible secondary source particle/radiation 
beams for probing/driving experiments

High brightness, high flux sources of x-rays, g’s, energetic particles (electrons, 
ions, neutrons, positrons) will enable numerous applications

Markey, STFC report (2010) 

Ion Acceleration Wakefield Acceleration

Examples: Sources

S. Dann, et al., PRAB (2019)

Also: R.J. Shalloo, et al., Nat. Comm. (2021)
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Many classes of IFE-relevant experiments will benefit from different features of high-
throughput experiments

i. Laser plasma instabilities
à Laser pulse shapes/plasma environments

ii. dynamic compression physics
à probe new phase space

iii. non-equilibrium physics in warm dense matter
à trace evolution of the system in time

iv. materials EOS and opacity
à statistics to minimize error bars

v. particle and radiation beams**
à consistency, reproducibility, high average brightness

vi. plasma nuclear physics
à high average numbers to probe rare or subtle nuclear rxns**

**See G.J. Williams WP

Examples
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HRR is not just driver @ 10 Hz à a fully integrated system that leverages ML and 
AI in many domains for autonomous operation

Challenges that stem from high-rep-rate experiments are starting to 
be addressed
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HRR System
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Machine Learning & Artificial Intelligence are already making large impacts in 
scientific discovery & fusion
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ML can organize & analyze large data sets, help with safe driver operation, and 
can incorporate experimental data to build real-world-informed models

NIF Damage Detection

Regression Classification Expt.-informed Models

Ensembles/Surrogate models Interpreting experiments

Advances in computational power and ML techniques enable new approaches to 
data analysis, prediction, and comparing simulations & experiments

Examples: ML Apps
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ML/AI are being used to explore vast parameter spaces, bridge multi-scale multi-
physics multi-fidelity simulations, and optimize designs

Djordjević, B. Z., et al. Physics of Plasmas, 28(4), 043105.
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Ensemble PIC Modeling for Particle Source Ensemble HYDRA Modeling for Experimental Design
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Simulations have a significant head start on leveraging ML à blueprints for 
experiments at HRR

ML Examples: Simulations
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ML in tandem with accurate models can be trained to ensure safe and accurate 
driver operation

ML Examples: Simulations

NN-predicted Laser Damage

T. Galvin, et al., Proc. of SPIE 10751(2018)

Laser Input Spectra

Crucial in science experiments and for IFE à cannot afford downtime
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Diagnostics must be HRR-capable while remaining robust to extremely hostile 
experimental environments (EMP, neutrons, etc.)

D.A. Mariscal, et al, “Design of Flexible Proton Beam Imaging Energy Spectrometers 
(PROBIES)”, PPCF (2021)

R.A. Simpson, et al., “Development of a deep learning based automated data 
analysis for step-filter x-ray spectrometers in support of high-repetition rate short-
pulse laser-driven acceleration experiments”, RSI 92, 075101 (2021)

Proton Beams Multi-keV X-rays X-ray Spectra

D.A. Mariscal, (Submitted)

Temp Distribution

Data

Temp-weighted Fit

Incorporating ML into diagnostics (edge) will be necessary for rapid and accurate 
analysis that leaves time for on-the-fly decisions**

**See G.G. Scott WP

ML Examples: Diagnostics
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ML can help processing/storing data gathered from high rep-rate experiments

in-flight shape hot-spot shape

~7 Mbar
RMS = 125 m/s

~10 Mbar
RMS = 86 m/s

~12 Mbar
RMS = 36 m/s

~12 Mbar
RMS = 11 m/s

Capseed Experiments in FY17 and FY18
Microcrystalline HDC

CapseedShellCryo-18B
Nanocrystalline HDC

Micro-struct

ablation front growth

shock velocities

implosion velocities
n-uniformity

stagnation hydro

n time-of-flight 

Leverage knowledge from low shot-rate facilities (lasers, pulsed-power) and high rep-
rate facilities (accelerators) to handle data streams

*S. Azevedo, et al., National Ignition Facility (NIF) Shot Data Analysis and Visualization (2012)

Data Handling
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Heterogenous data is used to benchmark HED codes à design the next 
generation of experiments (currently over weeks/months/years)

Reduced data representaVons will be necessary for experiments and 
simulaVons to “communicate”

shell trajectory

hot-spot shape

x-ray 
drive 
spectrum

shock velocities

in-flight shape 

Used to constrain models & drive on capsule

ablation front growth

stagnation 
hydrodynamics

interface growth

Used to validate instability & degradation 
mechs.

HYDRA
(ALE)

Miranda (High-order 
Eulerian)

Used to test different models/physics

Drive characterization
Code comparisons

Hydrodynamics “validation”

ARES

HYDRA

Los Alamos National Laboratory UNCLASSIFIED

UNCLASSIFIED 5/4/2017 | 6

RAGE

HYDRA

Fill tube

~7 Mbar
RMS = 125 m/s

~10 Mbar
RMS = 86 m/s

~12 Mbar
RMS = 36 m/s

~12 Mbar
RMS = 11 m/s

Capseed Experiments in FY17 and FY18
Microcrystalline HDC

CapseedShellCryo-18B
Nanocrystalline HDC

Micro-struct

Data Handling
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Machine learning allows us to improve predictive modeling across applications

Machine learning will allow us to use our full data sets to make our models 
more predictive

High-performance computing Large-scale experiments
Machine learning to compare 

simulation and experiment

HYDRA simulation

NIF X-ray image

Complete simulation and experiment data

Improved prediction

Deep neural 
network

*B. Spears
Recent demos: Humbird, et al., IEEE TRANS PLAS SCI  48, (2020 ), Gopalaswamy, Varchas, et al. Nature 565.7741 (2019)
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Most of the enabling technology has been demonstrated à must be integrated
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ML & AI will be crucial to increasing the rate while maintaining high fidelity
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To increase the rate of learning from HRR facilities in support of IFE, experiments 
and simulations must be integrated through ML and AI

• Connect multi-physics, multi-
scale, multi-fidelity models

• Pipelines/filtration/storage• Rapid, accurate, heterogeneous 
data analysis à compared to 
simulation models

Simulations Experiments Data Handling

Multi-fidelity
• Low = 1,000’s
• High = 10’s

Multi-physics, multi-scale

Tech should be deployed & tested on existing facilities/capabilities to build up to full IFE à will contribute to HED, 
ICF, NNSA missions, LaserNetUS, etc. along the way




